Ref No:

Sri Krishna Institute of Technology, Bengaluru-560090

COURSE PLAN

Academic Year - 2019-2020

Academic Evaluation and Monitoring Cell

Program:	BE- Electrical and Electronics Engineering
Semester:	5
Course Code:	17EEL58
Course Title:	Power Electronics
Credit/L-T-P:	3/0-1-2
Total Contact Hours:	36
Course Plan Author:	Chaitra A S

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www,skit.org, e-mail:

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	
2. Laboratory Content	4
3. Laboratory Material	
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	6
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	8
4. Articulation Matrix	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	10
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and Identifiers	
Experiment 03 :	
Experiment 04	
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

17EEL58 : POWER ELECTRONICS LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	EE
Year / Semester :	3/5	Academic Year:	2019
Course Title:	Power Electronics Lab	Course Code:	17EEL58
Credit / L-T-P:	3/0-1-2	SEE Duration:	180 Minutes
Total Contact Hours:	36 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Chaitra A S	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Static Characteristics of SCR.	3	Performa	L3
			nce of	Apply
			SCR	
2	Static Characteristics of MOSFET and IGBT	3	Performa	L3
			nce of	Apply
			MOSFET	
			& IGBT	
3	Characteristic of TRIAC	3	Performa	L3
			nce of	Apply
			TRIAC	
4	SCR turn on circuit using synchronized UJT relaxation oscillator	3	UJT	L3
			Triggerin	Apply
			g	
			method	
5	SCR digital triggering circuit for a single phase-controlled rectifier	3	Digital	L4
	and ac voltage regulator.		Triggerin	Analyze
			g	
			Method	
6	Single phase controlled full wave rectifier with R and R –L loads.	3	Rectificat	L4
			ion	Analyze
7	AC voltage controller using TRIAC and DIAC combination	3	Voltage	L4
	connected to R and RL loads.		Control	Analyze
8	Speed control of dc motor using single semi converter.	3	Speed	L4
			Control	Analyze
9	Speed control of stepper motor.	3	Speed	L5
			Control	Evaluate
10	Speed control of universal motor using ac voltage regulator	3	Speed	L4
			Control	Analyze
11	Speed control of a separately excited D.C. Motor using an IGBT or	3	Speed	L4
	MOSFET chopper.		Control	Analyze

12	Design of Snubber circuit.	3	Snubber	L5
			Protectio	Evaluate3
			n	

3. Lab Material

Unit	Details	Available
1	Text books	
	Power Electronics: Circuits Devices and Applications BY Mohammad H Rashid,	In Lib
	Pearson 4th Edition, 2014.	
2	Reference books	
1.	Power Electronics: Converters, Applications and Design Ned Mohan et al	In dept
-	Wiley 3rd Edition, 2014	
2.	Power Electronics BY Daniel W Hart, McGraw Hill, 1 st Edition, 2011	
3	Elements of Power Electronics, Philip T Krein, Oxford, Indian Edition, 2008	
3	Others (Web, Video, Simulation, Notes etc.)	Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	15ELN15	Basic Electronics	1. Knowledge on Basic working	2	-
2	15EE34	Analog Electronic	FET, MOSFET Construction, working,	3	-
		Circuits	Characteristics		

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Keep the lab neatly. Maintain silence.	
2	Maintain your lab observation and lab manual.	
3	Prepare your experiment in well advance.	
4	Check the power supply before use.	
5	Maintain discipline in the lab.	
6	After completion of your experiment switch off the power supply.	
7	Observation book and Lab record are compulsory.	
8	Students should report to the concerned lab as per the time table.	
9	After completion of the experiment, certification of the concerned staff in-	
	charge in the observation book is necessary.	
10	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Check for all the connections of the circuit and scope connections before	
	powering the circuit, to avoid shorting or any ground looping, that may lead	
	to electrical shocks or damage of equipment	

BE-5-EE-SKIT-Ph5b1-F02-V2.2

2	Check any connections for shorting two different voltage levels	
3	Check if you have connected load at the output	
4	Double check your wiring and circuit connections	
5	Apply low voltages or low power to check proper functionality of circuits while switching ON the circuit.	
6	Once functionality is proven, increase voltages or power, stopping at frequent levels to check for proper functioning of circuit or for any components is hot or for any electrical noise that can affect the circuit's operation.	
7	Reduce the voltage or power slowly till it comes to zero.	
8	Switch of all the power supplies and remove the power supply connections.	
9	Avoid using long wires, that may get in your way while making adjustments or changing leads.	
10	Keep high voltage parts and connections out of the way from accidental touching and from any contacts to test equipment or any parts, connected to other voltage levels	

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr	Assessment	Blooms'
		Hours		Method	Method	Level
1	Obtain the static characteristic of SCR and their performance in terms of voltage & current.	10	Performance of SCR	Demons trate	Unit Test, Viva Voce	L3
2	Compute static characteristics of MOSFET & IGBT and obtain their performance in terms of voltage & current.	06	Performance of MOSFET & IGBT	Demons trate	Assignment	L3
3	Compute static characteristics of TRIAC and obtain their performance in terms of voltage & current.	07	Performance of TRIAC	Demons trate	Assignment and unit Test	L3
4	To generate triggering pulses using UJT relaxation oscillator.	03	UJT Triggering method	Demons trate	Assignment	L3
5	Generator triggering pulses using SCR digital trigger circuit using single phase controlled rectifier.	03	Digital Triggering Method	Demons trate	Unit test	L4
6	Analyze the performance of a single phase full wave controlled rectified connected to R & RL load.	03	Rectification	Demons trate	Assignment	L4
7	Analyze the performance of AC voltage controller applied to R & RL load using TRIAC and DIAC.	03	Voltage Control	Demons trate	Assignment and unit Test	L4
8	Control the speed of DC motor using semi converter by varying firing angle.	03	Speed Control	Demons trate	Assignment Viva Voce	L4
9	Control the speed of stepper motor.	03	Speed Control	Demons trate	Assignment Viva Voce	L5
10	Control the speed of universal motor using controlled rectifier.	03	Speed Control	Demons trate	Assignment Viva Voce	L4
11	Control the speed of a separately exited DC motor using MOSFET chopper by	03	Speed Control	Demons trate	Assignment	L4

BE-5-EE-SKIT-Ph5b1-F02-V2.2

	varying duty cycle of the thyristor.					
12	Design the snubber circuit for the	03	Snubber	Demons	Assignment	L5
	protection of power circuit from faults.		Protection	trate	Unit Test	
-	Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
1	SCR are used in Industrial application such as induction heating, dielectric heating and lamp dimming.	CO1	L3
2	SCR are used in static AC /DC circuit breakers, control rectifiers, tap changers	CO1	L3
3	Transistors are used in low power logic gates, DC motor drives, AC motor drives	CO2	L3
4	Transistors are used in isolation circuit such as opto-couplers and pulse transformers.	CO2	L3
5	TRIAC's are used in AC switches, starter circuit for lamps.	CO3	L3
6	UJT is used as a triggering device for SCR's, sawtooth generators, phase control and timing circuits.	CO4	L3
7	AC voltage controllers are used in cyclo converters, matrix converters, Electric welding.	CO5	L4
8	Control rectifiers are used in speed control of DC motor, Universal motors, lamp dimming.	CO6	L4
9	AC voltage controllers are used in power generation, power transmission, electric heating, induction heating.	CO7	L5
10	Control rectifiers are used in speed control of DC motor, Universal motors, lamp dimming.	CO8	L4
11	Stepper motors are used for precise positioning with a motor such as hard disc drives, robotics, antennas, telescopes etc	CO9	L4
12	Universal motors are used in portable power tools and equipments, house hold applications.	CO10	L4
13	Choppers are used in railway traction, battery charges, switched capacitance filters, variable frequency drives, class D electronic amplifiers, battery operated electric cars.	CO11	L4
14	Snubber circuits are used across the relays and switches to prevent arcing.	CO12	L5

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

_	Course Outcomes	Program Outcomes												
#	COs	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	Level
			2	3	4	5	6	7	8	9	0	1	2	
15EEL58.1	Obtain the static characteristic of	2.5	2.5											L3
	SCR and their performance in													
	terms of voltage & current.													
15EEL58.2	Compute static characteristics of	2.5	2.5											L3
	MOSFET & IGBT and obtain their													
	performance in terms of voltage &													
	current.													
15EEL58.3	Compute static characteristics of	2.5	2.5											L3

BE-5-EE-SKIT-Ph5b1-F02-V2.2

	TRIAC and obtain their performance in terms of voltage &								
	current.								
15EEL58.4	To generate triggering pulses using UJT relaxation oscillator.	2.5	2.5				2.5		L3
15EEL58.5	Generator triggering pulses using SCR digital trigger circuit using single phase control rectifier.	2.5	2.5				2.5		L4
15EEL58.6	Analyze the performance of a single phase full wave controlled rectified connected to R & RL load.	2.5	2.5				2.5		L4
15EEL58.7	Analyze the performance of AC voltage controller applied to R & RL load using TRIAC and DIAC.	2.5	2.5				2.5		L4
15EEL58.8	Control the speed of DC motor using semi converter by varying firing angle.	2.5	2.5				2.5		L4
15EEL58.9	Control the speed of stepper motor.	2.5	2.5				2.5		L5
15EEL58.10	Control the speed of universal motor using controlled rectifier.	2.5	2.5				2.5		L4
15EEL58.11	Control the speed of a separately exited DC motor using MOSFET chopper by varying duty cycle of the thyristor.	2.5	2.5				2.5		L4
15EEL58.12	Design the snubber circuit for the protection of power circuit from faults.	2.5	2.5	2.5					L5
15EEL58.	Average								

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mappir	ng	Mapping	Justification						
00	PO	Level							
CO1	PO1	L1	Knowledge on semiconductor materials, internal structure of a SCR and characteristics of SCR.						
CO1	CO1 PO2 L2		ntify the latching current and holding current to obtain the formance and characteristics of SCR						
CO2	PO1	L1	Knowledge on semiconductor materials, internal structure of a MOSFET, IGBT and characteristics of MOSFET and IGBT.						
CO2	PO2	L4	Analyse the output and transfer characteristics of IGBT and MOSFET to obtain the performance and characteristics of IGBT and MOSFET.						
CO3	PO1	L1	Knowledge on semiconductor materials, internal structure of a TRIAC and characteristics of TRIAC.						
CO3	PO2	L4	Analyse the static characteristics of TRIAC to obtain the performance in terms of voltage and current.						
CO4	PO1	L1	Knowledge on UJT, oscillator is required to generate triggering pulses.						
CO4	PO2	L4	Analyse the UJT firing circuit to generate firing signals.						
CO4	PO9	L3	Projects can be done on UJT firings circuits.						
CO5	PO1	L1	Knowledge on SCR, single phase control rectifier and digital circuit is required to produce the triggering pulses.						

	LABORATO	ORY PLAN	- CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2
CO5	PO2	L4	Analyse the digital firing circuit to trigger the SCR in power circuit.
CO5	PO9	L3	Projects or internship on digital firing circuit.
CO6	PO1	L1	Knowledge on SCR and single phase control rectifier is required to
	DOa		produce the triggering pulses.
000	P02	L2	conditions.
CO6	PO9	L3	Projects or internship on control rectifier.
CO7	PO1	L1	Knowledge on SCR, single phase AC voltage controller, TRIAC and DIAC is required.
CO7	PO2	L4	Analyze the performance of AC voltage controller applied to R & RL load using TRIAC and DIAC.
CO7	PO9	L3	Projects or internship on AC voltage controller for control of AC operated instruments.
CO8	PO1	L1	Knowledge on DC motor and different types of DC motor is required for the control of speed of DC motor.
CO8	PO2	L4	Analysis of of semi converter by varying the firing angle to control the speed of DC motor.
CO8	PO9	L3	Projects or internship on application where speed of DC motor is varied.
CO9	PO1	L1	Knowledge on stepper motor is required for the control of speed of stepper motor.
CO9	PO2	L4	Analysis of stepper motor by varying the stepper motor with different inputs and to control the speed of DC motor.
CO9	PO9	L3	Projects or internship on application where speed of stepper motor is varied.
CO10	PO1	L1	Knowledge on Universal motor and different types of motor is required for the control of speed of the motor.
CO10	PO2	L4	Analysis of controlled rectifier by varying the firing angle to control the speed of universal motor.
CO10	PO9	L3	Projects or internship on application where speed of universal motor is varied.
CO11	PO1	L1	Knowledge on DC motor and different types of DC motor is required for the control of speed of DC motor.
CO11	PO2	L4	Analysis of chopper by varying the duty cycle to control the speed of DC motor.
CO11	PO9	L3	Projects or internship on application where speed of DC motor is varied.
CO12	PO1	L1	Knowledge on current and voltage protection is required for the design of protection circuit.
CO12	PO2	L4	Analysis of snubber circuit for over voltage protection.
CO12	PO3	L3	Design of snubber circuit for over voltage protection
	110 11	r	

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

1	SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping			
	1								
· · _									

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

BE-5-EE-SKIT-Ph5b1-F02-V2.2

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi		Nc	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Static Characteristics of SCR.	03	1	-	-	-	-	-	1	CO1	L3
2	Static Characteristics of MOSFET and IGBT	03	1	-	-	-	-	-	1	CO2	L3
3	Characteristic of TRIAC	03	1	-	-	-	-	-	1	CO3	L3
4	SCR turn on circuit using synchronized UJT relaxation oscillator	03	1	-	-	-	-	-	1	CO4	L3
5	SCR digital triggering circuit for a single phase-controlled rectifier and ac voltage regulator.	03	-	1	-	-	-	-	1	CO5	L4
6	Single phase controlled full wave rectifier with R and R –L loads.	03	-	1	-	-	-	-	1	CO6	L4
7	AC voltage controller using TRIAC and DIAC combination connected to R and RL loads.	03	-	1	-	-	-	-	1	CO7	L4
8	Speed control of dc motor using single semi converter.	03	-	1	-	-	-	-	1	CO8	L4
9	Speed control of stepper motor.	03	-	-	1	-	-	-	1	CO9	L5
10	Speed control of universal motor using ac voltage regulator	03	-	-	1	-	-	-	1	CO10	L4
11	Speed control of a separately excited D.C. Motor using an IGBT or MOSFET chopper.	03	-	-	1	-	-	-	1	CO11	L4
12	Design of Snubber circuit.	03	-	-	1	-	-	-	1	CO12	L5
-	Total	60	4	4	4	5	5	5	12	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L3, L3,L3,L3
CIA Exam – 2	30	CO5, CO6, CO7, CO8	L4, L4, L4, L4
CIA Exam – 3	30	CO9, CO10, CO11, CO12	L5, L4, L4,L5
Assignment - 1	05	CO1, CO2, CO3, CO4	L3, L3,L3,L3
Assignment - 2	05	CO5, CO6, CO7, CO8	L4, L4, L4, L4
Assignment - 3	05	CO9, CO10, CO11, CO12	L5, L4, L4,L5
Other Activities – define – Slip test		CO1 to Cog	L2, L3, L4

BE-5-EE-SKIT-Ph5b1-F02-V2.2

80 Marks

100 Marks

F	Final CIA Marks	40	-	-			
-	1						
SNo		Marks					
1	Observation and We	eekly Laboratory Activities		05 Marks			
2	Record Writing			10 Marks for each Expt			
3	Internal Exam Asses	ssment		25 Marks			
4	Internal Assessmen	t		15 Marks			

D. EXPERIMENTS

SEE

Total

5

-

Experiment 01 : Static Characteristics of SCR

-	Experiment No.:	1	Marks		Date Planned		Date Conducted		
1	Title	Sta	tic Character	istics of SCR			conducted		
2	Course Outcomes	Obt volt	Obtain the static characteristic of SCR and their performance in terms of /oltage & current.						
3	Aim	1. To 2. To	 To obtain V-I characteristics of SCR for different gate currents. To obtain holding current and latching current experimentally. 						
4	Material / Equipment Required	tLab SCF Dua Mill Vol Rhe	Lab Manual SCR-TYN612 Dual power supply Milli ammeter-0-10mA,0-100mA Voltmeter-0-300V Pheostat- 1Kohms						
5	Theory, Formula Principle, Concept	Thy anc woi Thy a w ele sup The tha	Thyristors or silicon controlled rectifiers, SCR are find many uses in electronics, and in particular for power control. These devices have even been called the workhorse of high power electronics. Thyristors are able to switch large levels of power are accordingly they used in a wide variety of different applications. Thyristors even finds uses in low power electronics where they are used in many circuits from light dimmers to power supply over voltage protection. The term SCR or silicon controlled rectifier is often used synonymously with						
		used by General Electric. The thyristor or silicon controlled rectifier, SCR is a device that has a number o unusual characteristics. It has three terminals: Anode, cathode and gate reflecting thermionic valve / vacuum tube technology. As might be expected the gate is the control terminal while the main current flows between the anode and cathode. As can be imagined from its circuit symbol shown below, the device is a "one way device" giving rise to the GE name for it the silicon controlled rectifier							

	LABORATORY	PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2							
		Therefore when the device is use	d with AC, it will only conduct for a maximum							
		of half the cycle.								
		In operation, the thyristor or SCR	will not conduct initially. It requires a certain							
		level of current to flow in the gate	vel of current to flow in the gate to fire it. Once fired, the thyristor will remain							
		obviously happens at the end	of the half cycle over which the thyristor							
		conducts. The next half cycle will	be blocked as a result of the rectifier action.							
		It will then require current in the g	ate circuit to fire the SCR again.							
			-							
6	Procedure, Program,	Connections are made as	s shown in the circuit diagram.							
	Activity, Algorithm,									
	Pseudo Code	 Gate current I_G is set at d 	lifferent values (3-4.5 mA) by varying the gate							
		supply voltage.								
		The V-L curve is obtaine	ed by slowly varying anode supply voltage							
		(Anode, current will be v	ery small till breakdown point is reached. At							
		breakdown there is a su	dden flow of anode current and the voltage							
		across SCR drops down t	o a low value approximately, less than 1 V).							
		The latching current l	is obtained by noting down anode current							
		immediately after the S	CR starts conducting Also note down the							
		breakdown voltage, V _{BD.}	breakdown voltage, V_{BD}							
		• The holding current IH is	s obtained by decreasing the anode voltage							
		At some point anode cu	rrent suddenly drops to zero. The current at							
		which this happens is the	holding current.							
		The procedure is repeate	d for different gate currents							
7	Block, Circuit, Model		0-100mA							
	Diagram, Reaction									
	Graph		IA							
		470?/05W Ig 6 612	+							
		-10mA	0-300V - V _{RPS} +							
		+ VRPS _ 0.30V	0-300 Y							
			I							
8	Observation Table		mΔ)							
	Look-up Table.									
	Output									
		I _{G2} (mA)								
			L _A (mA)							
1										

I_A (

9	Sample Calculations	
10	Graphs, Outputs	Note: $I_G = Gate current$ $I_A = Anode current$ $V_A = Voltage drop in SCR$ Forward Conduction drop I_L $I_{G3} > I_{G2} > I_{G1}$ $I_{G3} > I_{G1} > I_{G2}$ $I_{G1} > I_{G1} > I_{$
11	Results & Analysis	
12	Application Areas	 SCR are used in Industrial application such as induction heating, dielectric heating and lamp dimming. SCR are used in static AC /DC circuit breakers, control rectifiers, tap changers
13	Remarks	
14	Faculty Signature with Date	

Experiment 02 : Static Characteristics of MOSFET and IGBT

-	Experiment No.:	2	Marks		Date		Date	
					Planned		Conducted	
1	Title	Static	: Characteris	tics of MOSF	ET and IGBT			
2	Course Outcomes	Com	oute static cl	naracteristics	of MOSFET	& IGBT and	obtain their p	berformance
		in ter	ms of voltage	e & current.				
3	Aim	1)To c	btain the ou	tput characte	eristics.			
_		2)To p	olot the drair	current I _D as	a function o	f drain to sou	urce voltage `	V _{DS} with
		gate	to source vol	tage V _{GS} as p	barameter.		-	
		3) To	obtain the tra	ansfer charac	teristics.			
		4) To	plot the draii	n current l _D ag	gainst gate to	o source volt	age V _{GS.}	
		5) To	find trans co	nductance fr	om transfer o	haracteristic	S.	
4	Material /	′Lab N	Manual					
	Equipment	MOS	FET-IRF540					
	Required	IGBT-	-IGRP40u					
		Voltn	neter-0-50V,0	D-10V,0-100V	1			
		Amm	eter-0-100A	0-50mA				
		Dual	Power Suppl	y-2				
		Resis	tor-1000hms	s, 1KOhms, 47	70ohms			
5	Theory, Formula	The I	MOSFET (Me	tal Oxide Se	miconductor	Field Effect	Transistor) ti	ransistor is a
	Principle, Concept	semi	conductor d	evice which	is widely	used for sv	witching and	amplifying
		elect	ronic signals	in the electr	onic devices	. The MOSF	ET is a core of	of integrated
		circui	t and it can	be designed	and fabricat	ed in a sing	le chip beca	use of these
		very :	small sizes.	The MOSFET	Г is a four ter	minal device	e with source	e(S), gate (G),

		drain (D) and body (B) terminals. The body of the MOSFET is frequently connected to the source terminal so making it a three terminal device like field effect transistor. The MOSFET is very far the most common transistor and can be used in both analog and digital circuits.
		The Insulated Gate Bipolar Transistor also called an IGBT for short, is something of a cross between a conventional <i>Bipolar Junction Transistor</i> , (BJT) and a <i>Field Effect Transistor</i> , (MOSFET) making it ideal as a semiconductor switching device. The <i>IGBT Transistor</i> takes the best parts of these two types of common transistors, the high input impedance and high switching speeds of a MOSFET with the low saturation voltage of a bipolar transistor, and combines them together to produce another type of transistor switching device that is capable of handling large collector-emitter currents with virtually zero gate current drive.
		The <i>Insulated Gate Bipolar Transistor</i> , (IGBT) combines the insulated gate (hence the first part of its name) technology of the MOSFET with the output performance characteristics of a conventional bipolar transistor, The advantage gained by the insulated gate bipolar transistor device over a BJT or MOSFET is that it offers greater power gain than the standard bipolar type transistor combined with the higher voltage operation and lower input losses of the MOSFET. In effect it is an FET integrated with a bipolar transistor in a form of Darlington type configuration.
6	Procedure,	1.OUTPUT CHARACTERISTICS
	Program, Activity, Algorithm, Pseudo Code	 Circuit connections are made as shown in the figure. Keep the gate voltage constant say 3.2V, 3.3V, 3.4V. Vary the drain voltage from (0 to 30V) volts in steps of 0.5V and obtain the drain currents. Each time note down the drain current and drain voltage. Repeat the above procedure for different gate voltages. Plot the drain current Vs drain voltage. Calculate the R_{DS} from the graph.
		2.TRANSFER CHARACTERISTICS
		 Keep the drain voltage as constant as say 5V,10V and 12V. Vary the gate voltage in steps of 0.1V from 3.0V to 3.8V. Each time obtain the drain current. Repeat the above procedure for different drain voltages. Plot the curve for I_D Vs V_{GS}. From the graph find the Trans conductance (G_M).

Experiment 03 : Characteristics of TRIAC

LABORATORY PLAN - CAY 2019

-	Experiment No.:	3	Marks		Date Planned		Date Conducted	
1	Title	Chara	acteristics of	TRIAC	rannea		oonaactea	
2	Course Outcomes	Com volta	oute static cł ge & current.	naracteristics	of TRIAC and	d obtain theii	r performanc	e in terms of
3	Aim	To dr	aw V -I chara	cteristics of T	RIAC for diffe	erent values	of Gate Curre	ents.
4	Material / Equipment Required	Lab N TRIA Voltn Amm	ab Manual RIAC-BT136 ′oltmeter-0-30V .mmeter-0-30A					
		Dual	power suppl	γ γ				
5	Theory, Formula Principle, Concept	A Tria in bo whicl powe other nega trigge	ac is a high-s th directions n is also a r er switching words, a <i>T</i> tive voltages er pulses ap	peed solid-s of a sinusoic nember of tl device but i <i>riac</i> can be s applied to plied to its C	tate device t dal waveform he thyristor f more import triggered in its Anode a Gate terminal	hat can swit "Triode AC family that k antly it is a to conduction nd with bol making it a	ch and contr Switch" or T i be used as a "bidirectiona on by both th positive a two-quadra	ol AC power iac for short a solid state a solid state a solid state a solid state n d egative nt switching

	LABORATOR	RY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
		Gate controlled device.	
		A Triac behaves just like two c inverse parallel (back-to-back) w arrangement the two thyristors sh three-terminal package.Since a tr waveform, the concept of an An- identify the main power terminals of: MT ₁ , for <i>Main Terminal 1</i> and M	onventional thyristors connected together in ith respect to each other and because of this hare a common Gate terminal all within a single iac conducts in both directions of a sinusoidal ode terminal and a Cathode terminal used to s of a thyristor are replaced with identifications T ₂ for <i>Main Terminal 2</i> with the Gate terminal G
		referenced the same.	
6	Procedure,	1. Connections are made as she	own in the circuit diagram
	Algorithm Pseudo	2. Adjust the value of ${\rm I}_{\rm g}$ to zero	o or some minimum value
	Code	 By varying the voltage V_{mt2m} note down corresponding variable 	$_{t1}$ from 0 to 10 volts with a step of 2 volts, lues of $\rm I_1$
		 Now apply the gate voltage values of I_g and also the value 	gradually, until SCR fires, then note down the ues of I_1 and V_{mt2mt1} .
		5. Increase V _m to some value a	nd note down I_1 and V_{mt2mt1} .
		 Reduce gate voltage to zero, which gives the values of I_h current suddenly drops to zero. 	, observe ammeter reading by reducing V _m (holding current) at the point at which, ero
		7. Repeat the steps 2, 3, 4, 5 8	& 6 for different values of break over voltages
		8. Plot a graph of V_{mt1mt2} v/s I_1	
		9. Repeat the steps 1, 2, 3, 4,	5, 6 & 7 for different modes
		10.Compare sensitivity of TRIAC	C and comment on sensitivities.
		11.Refer same design procedure	e for selection of R_L and R_g as that of SCR.
		12.Follow the same procedure a	as that of SCR experiment to find latching
7	Block Circuit	current.	
	Model Diagram, Reaction Equation, Expected Graph	(a) MODE 1 1 K Ω /aw (a) MODE 1 (a) MODE 1 (b) /aw (c) -30 mA) (c) -30 V	MT2 MT1 BT136 MT1 + Vmt2t1 (0-30V) Vm + 0-30V
			•

Experiment 04 : SCR turn on circuit using synchronized UJT relaxation Oscillator

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	SCR	turn on circui	t using syncl	nronized UJT	relaxation O	scillator	
2	Course Outcomes	To ge	enerate trigge	ering pulses	using UJT rel	axation oscil	lator.	
3	Aim	1.To c 2. SC	btain trigger R triggering o	ing pulses o circuit using t	of sufficient a	amplitude ar stained in (1).	nd width using	g UTJ.
4	Material /	Lab N	Manual					
	Equipment Required	SCR	power circuit	cuit module				
5	Theory, Formula Principle, Concept	A syr Recti value volta circu volta the L junct trans the S be co 180 0	nchronized U fier converts e for the zene ge to a stand it. Charging ge across the JJT ion breaks d transformer former have SCR.As the ch ontrolled by	JT triggered input ac to c er diode and dard level. Th of capacitor,V e capacitor,V lown and the c. As the curr pulse voltag narging rate varying R3.Fi	circuit using lc. Resistor R UJT. Zener of re zener volta C is at a ra 3 reaches th e capacitor of ent is in the ges at their s of capacitor ring angle c	an UJT is sl limits the ci liode 'Z' func- age V 2 is ap ate determin e unijunction C discharges form of puls secondary te varies by van an be contro	nown in the f rcuit current oplied to the ned by R1 and n threshold version of through the se, windings orminals and rying R3, firin olled in a ran	igure. Diode to a suitable the rectified RC charging nd R3.When oltage ηV 2 , e primary of of the pulse can turn on ig angle can ge of 0 0 to

6	Procedure, Program, Activity, Algorithm, Pseudo	1.	The circuit connections are made as shown for half wave firing circuit for thyristor and observe the wave form across load. Bt varying the potentiometer R observe the waveform on CRO at different points.						
	Code	2.	Connect CRO across load terminals.						
		3.	Connect voltmeter 0-50V dc across load terminals to get $V_{\text{dc.}}$						
		4.	The potentiometer pf triggering circuit is kept at minimum.						
		5.	Check the circuit connections and power on the trainer kit.						
		6.	Slowly vary the potentiometer of triggering circuit clockwise to obtain output on CRO and measure the angle.						
		7.	Vary the potentiometer of triggering circuit to get different angle. Obtain the reading of α and I_{dc} and V_{dc} in ammeter and voltmeter and tabulate the readings of α , I_{dc} & V_{dc} for different firing angles.						
		8.	Repeat the above procedure for R and L load connected together, R=100 Ω and L=10mH which are provided on the panel.						
		9.	Tabulate the readings for R & L load for different α , I_{dc} & V_{dc}						
		10.	Connect free wheeling diode across load terminals and observe the waveforms.						
			Vdc= <u>Vm</u> (1+cos α) /2 π For R load						
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph		4.7K OHMS P_1 D_1 D_2 V_2						

BE-5-EE-SKIT-Ph5b1-F02-V2.2

13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 : SCR Digital triggering circuit for a single phase controlled rectifier and AC voltage controller

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	SCR volta	Digital trigg ge controller	ering circuit	for a single	e phase cor	ntrolled recti	fier and AC
2	Course Outcomes	Gene contr	rator trigger	ing pulses u d AC Voltage	sing SCR dig controller	ital trigger c	ircuit using s	single phase
3	Aim	To ge	enerate the fi	ring signals f	or thyristor/T	RIAC'S using	g digital circu	its.
4	Material / Equipment Required	Lab N Digita Trans SCR- Resis CRO Voltn Amm	Manual Al Firing circu former- 240\ 2 tor-1000hms neter-0-20V 1eter	it //12V 5				
5	Theory, Formula Principle, Concept							
6	Procedure, Program, Activity, Algorithm, Pseudc Code	The c 1.Con 2. Co 3.Cor to K ₂ 4. Ch 5.Van 6. Tal	The circuit connection is made as per the circuit diagram. .Connect CRO across Load terminals for channel-1 to see the load wave forms 2. Connect voltmeter 0-50V DC across load terminals A&B to get V_{DC} . 3. Connect triggering circuit outputG ₁ to G ₁ of triggering circuit .K ₁ to G ₂ to G ₂ , K ₂ o K ₂ of triggering circuit terminals. 4. Check the circuit connections and power on the trainer kit. 5. Vary the logic switches from 0001 to 1111(15) and vary the firing angle.					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Syn. Si (~ 6) C	FIXED GUENCY CILLATOR (t ₁) RESET gnal ply e ZERO DE DE DE DE DE DE DE DE DE DE	SWITCHING B B COUNTER LOAD COUNTER LOAD COUNTER COUNTE	A FLIP-FLO Min R FLIP-FLO (F/F)	DP B M HESET CAR FREQU OSCIL S 100	A LOGIC CIRCUIT DULATOR G2 IC Y (1' or '0') RIER JENCY LATOR KHz	K, - K ₂

Experiment 06 : Single Phase Controlled full wave rectifier with R and RL loads

-	Experiment No.:	6	Marks		Date Planned		Date Conducted		
1	Title	Singl	e Phase Con	trolled full wa	ave rectifier v	vith R and RL	loads	<u> </u>	
2	Course Outcomes	Analy	Analyze the performance of a single phase full wave controlled rectified						
		conn	connected to R & RL load						
3	Aim	1	. To plot V_D	_c Vs firing an	gle $lpha$ for R-lo	bad.			
		2	. To plot V _D	_c Vs conduct	ion angle for	R-l load.			
		3	. To observ	e load voltag	e and SCR w	vave form on	a CRO.		
		4	. To observ	e the effect o	of FWD (Free	wheeling did	ode) on load		
			voltagewa	ave form.					
4	Material /		1anual						
	Equipment	SCR-	4 NO						
	Required	Volta	neter						
		Rheo	stat						
		Induc	ctor						
		Free	wheeling Dio	de					
		Trigg	ering circuit						
		CRO							
5	Principlo Conconto	In the	e period 0 < 1 Ta pro rovor	π/ω ; the SC	RS 11 and 12	2 are forward through th	l blased and	the SCRS 13	
	Phinciple, Concepts	anu	is the load a	se plaseu. I re zero l et th		nd T2 be tria	nered at 24 a	α and α	
		$(0 < \alpha < $	m/ω).Then t	he supply te	erminals are	connected	to the load	through the	
		SCRs	and the c	urrent starts	flowing thr	ough the lo	ad via SCRs	T_1 and T_2 .	
		There	efore the sup	ply voltage	appears acro	oss the load	with a drop	of R and the	
		volta	ge drop acro	ss the SCRs	is zero when	they are con	ducting (SCF	≀ is assumed	
		ideal	In the perio	od (π/ ω <t<21< th=""><th>τ/ω); the SC</th><th>CRs T1 and</th><th>T2 are Reve</th><th>rsed biased</th></t<21<>	τ/ ω); the SC	CRs T1 and	T2 are Reve	rsed biased	
		henc	e cannot co	onduct and	T3 and T4	are forward	biased. Wh	en they are	
		trigge	ered at an an	gle of $(\pi + \alpha)$	$\omega 0 < (\pi + \alpha) /$	$\omega < 2\pi / \omega$].	hen the sup	oly terminals	
		are c	connected to	via SCDa T	nrougn the s	SCRS and tr	e current si	arts itowing	
		acros	s the load w	ith a drop R a	and the volta	de drop acro	supply volla	is zero when	
		thev	are conducti	ng (SCR is as	sumed idea	l).These SCR	s continue to	conduct up	
		to 2π	/ $ω$. Again c	luring the thi	rd positive H	lalf cycle sup	oply is positiv	ve and SCRs	
		T1 an	d T2 are forw	vard biased, it	[•] we give trig	gering SCRs	start conduc	ting and this:	
		cycle	repeats						
6	Procedure,	The c	circuit conne	ction is made	e as per the c	ircuit diagrar	n.		
	Program, Activity	, 1.Con	nect CRO a	cross Load t	erminals A a	and B for ch	nannel-1 to s	ee the load	
	Algorithm, Pseudo	wave	TORMS	store FOV/DC	across land	torminale A9	P to got \/		
	COUE	2.00 200	nnect triager	ina circuit ou	toutG. to G.	of triagering	circuit K t	o Gato Ga K	
		to K ₂	Gato Ga Kat	r_{2} G_{A} to G_{A}	and K ₄ to K ₄	of triggering	circuit termi	nals.	
		4.The	potentiome	ter of triggeri	ng circuit is l	kept at minim	num.		
		5. Ch	eck the circu	it connectior	is and power	on the traine	er kit.		
		6. Slo	wly vary the	potentiomet	er of triggeri	ng circuit clo	ockwise , to c	btain output	
		on Cl	KU Moocura tha	angla tha in	out a to act (AC from tria	aorina aira	transformer	
		outpi	ut (C&D) to C	RO channel I	pul 0 l0 25V	AC HOM trige	Jering circuit	. uansiormer	

	LABORATO	RY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
		J ^{de} ju III yunde	>
11	Results& Analysis	Firing angles and conduction angles are graphs are plotted.	obtained from R and R-L load and
12	Application Areas	Control rectifiers are used in speed control dimming	of DC motor, Universal motors, lamp
13	Remarks		
14	Faculty Signature with Date		

Experiment 07 : AC voltage Controller using TRIAC and DIAC combination

-	Experiment	7	Marks	Da	te	Date	
	No.:			Plan	ned	Conduct	
						ed	
1	Title	AC vo	oltage Contro	oller using TRIAC and	d DIAC combination	on	
2	Course Outcomes	Analy TRIA	/ze the perfo C and DIAC.	ormance of AC volta	ge controller app	lied to R & R	L load using
3	Aim		1. To 2. To 3. To	o observe variation o plot load current Vs plot load voltage Vs	f intensity of light delay angle α . s conduction ang	le (π- α) .	
4	Material / Equipment Required	Lab N Lamp Voltn Amm TRIA0 DIAC DRB	Manual neter-0-20V neter-0-500m C-BT136 -BR100 0-10K	ηA			
5	Theory, Formula Principle, Concept						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	9	 Conne DRB r Vo condu The va Plot t condu 	ections are made as esistance is varied ir ltage are noted action angle are mea ariation of intensity of the graph of I _L (rn action angle are draw	show in the circui o steps. At each si down correspor isured on CRO. f light is observed ns) Vs delay an vn.	t diagram. tep values of Iding delay d for variation: gle α and `	load current angle and s in R. VL (rms) Vs

BE-5-EE-SKIT-Ph5b1-F02-V2.2

Experiment 08 : Speed Control of DC Motor using single semi Converter

-	Experiment No.:	8	Marks		Date		Date		
					Planned		Conducted		
1	Title	Speed	peed Control of DC Motor using single semi Converter						
2	Course Outcomes	Contr	ontrol the speed of DC motor using semi converter by varying firing angle.						
3	Aim		1. To obs	serve_the va	riations of sp	eed of dc m	otor		
			2. To plo	t load currer	it Vs delay ar	igle α			
			3. To plo	t load voltag	e Vs conduc	tion angle β			
			4. IO OD	serve the e	effect of fre	e wheeling	diode on l	oad voltage	
-			waver	orm					
4	Material /		ianual						
	Equipment		olor						
	Required	Voltm	eter						
		Somi	convortor						
	Theony Formula	Jen tho		t π/ιν tho S	CDc T1 and	Diado D1 arc	forward bia	cod and the	
5	Principlo Concont		period 0 < Ta and Diod	c D are real	vorso biasod	Thon curro	nt through t	be load and	
		voltac	ne drop acro	e Dz ale lev	ra zaro latt		a triagered at	t an angle of	
			$\eta_{<\pi}$ (10) Δs t	he Diode D1	is already (conducting 1	the supply to	orminals are	
		conne	ected to the	load throug	the SCR a	and Diode t	he current st	tarts flowing	
		throug	The load v	via SCR T1 ar	nd Diode D1	Therefore the	e supply volt	age appears	
		acros	s the load t	he voltage (dron across	he SCR and	l the Diode i	s zero when	
		thev	are conduc	tina (SCR. D	iode are as	sumed idea	I). Soon afte	$r \pi/\omega$ load	
		voltac	ne tends to	reverse. Free	e wheeling [Diode aets fo	prward biase	d and starts	
		condi	uctina. The l	load. or outr	out current is	s transferred	from T1. D1	to FWD. As	
		SCR T	1 is reverse	biased at t =	π/ω + currer	t flows throu	igh FWD and	t T1 is turned	
		off. Th	e load term	inals are sho	rt circuited t	nrough FWD	therefore loa	ad voltage is	
		zero c	luring (π/ ω <	ct< (π+ α) /ω].	During the p	eriod ($\pi/\omega<1$	t<2π/ω); T2 a	nd Diode D2	
		are fo	rward biase	d. When T2 i	s triggered a	at an angle o	of (π+ α) / ω, [(ο< <u>3</u> 3(π+ α)∕ω	
		<2π/0	J, then the	FWD is rev	erse biased	and is turne	d off. During	this period	
		suppl	y terminals a	are connecte	ed to the load	d through th	e SCR and th	ne Diode D2,	
		the lo	ad current	shifts from F	WD to T2 a	nd D2. There	efore the sup	pply voltage	
		appea	ars across th	ne load. The	voltage dro	p across the	e SCR and D	iode is zero	
		when	they are con	nducting (SC	R, Diode are	assumed ide	eal). SCR T2 a	nd Diode D2	
		contir	nue to cond	uct up to 21	τ/ <mark>ω</mark> . For the	e next half d	cycle the loa	ad current is	
		transf	erred from	T2 and D2 to	the FWD a	nd SCR T1 a	nd Diode D1	are forward	
		biase	d, if we give	triggering SC	CR starts con	ducting and	this cycle rep	peats.	
6	Procedure,	1.	Connectic	ons are made	as shown.				
	Program, Activity,	2.	DRB resis	tance is vari	ed in steps	and at each	step rms va	lues of load	
	Algorithm, Pseudo)	current &	load volt are	noted.				
	Code	3.	At each s	setting of DF	≀B. The spee	ed in rpm is	also measu	ired using a	
			tachomet	er.					
		4.	The speed	d variation is	observed for	variation in [JRB resistanc	ce.	
		5.	graphs of	speed Vs Irm	ns & N Vs Vrr	ns are plotte	d		

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	Speed in RPM V _{RMS} (V) I _{RMS} (A) Image: Contract of the system of the syste
9	Sample Calculations	
10	Graphs, Outputs	EXPECTED WAVEFORMS:
11	Results& Analysis	The variation of speed of AC motor is observed and corresponding graphs are plotted
12	Application Areas	Control rectifiers are used in speed control of DC motor, Universal motors, lamp dimming.
13	Remarks	
14	Faculty Signature with Date	

Experiment 09 : Speed Control of Stepper Motor

-	Experiment No.:	9	Marks		Date		Date		
					Planned		Conducted		
1	Title	Spee	Speed Control of Stepper Motor						
2	Course Outcomes	Contr	Control the speed of stepper motor.						
3	Aim	To ob	o observe variation of speed control of DC Stepper motor						

	LABORATO	RY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2
4	Material / Equipment Required	 Permanent magnet, Bifilar wound, two phase steps per revolution: 200
	Required	3. step angle: $1.8^{\circ} \pm 0.1^{\circ}$ non-cumulative
		5. $1 \text{ kg cm} = 0.1 \text{ Nm} = 13.9 \text{ Z-in}$
5	Theory, Formula, Principle, Concept	Every motor converts power. Electric motors convert electricity into motion. Stepper motors convert electricity into rotation. Not only does a stepper motor convert electrical power into rotation, but it can be very accurately controlled in terms of how far it will rotate and how fast. Stepper motors are so named because each pulse of electricity turns the motor one step. Stepper motors are controlled by a driver, which sends the pulses into the motor causing it to turn. The number of pulses the motor turns is equal to the number of pulses fed into the driver. The motor will spin at a rate that is equal to the frequency of those same pulses.
		Stepper motors are very easy to control. Most drivers are looking for 5 volt pulses which just so happen to be the voltage level of most integrated circuits. You merely need to design a circuit to output pulses or use one of ORIENTAL MOTOR's pulse generators.
		One of the most remarkable features of stepper motors is their ability to position very accurately. This will be covered in depth later on. Stepper motors are not perfect, there are always some little inaccuracies. ORIENTAL MOTOR's standard stepper motors have an accuracy of \pm 3 arc minutes (0.05°). The remarkable feature of steps motors, though, is that this error does not accumulate from step to step. When a standard stepper motor travels one step it will go 1.8° \pm 0.05°. If the same motor travels one million steps, it will travel 1,800,000° \pm 0.05°. The error does not accumulate.
		Stepper motors can respond and accelerate quickly. They have low rotor inertia that can get up to speed quickly. For this reason stepper motors are ideal for short, quick moves.
6	Procedure,	1. The circuit connections are made as shown
	Program, Activity,	2. connect +ve supply connected RS to green terminals
	Algoninm, Pseudo Code	3. connect – blue pin to blue terminal
		Red pin to red terminal control winding Yellow pin to yellow terminal of stepper motor Black pin to black terminal
		 4. Connect the terminals of firing circuit from logic controller to MOSFET gate terminal as shown below. A. For clockwise direction G1 to G1 G2 to G2 G3 to G3 G4 to G4 B. For anticlockwise direction G1 to G4 G2 to G3 G3 to G3 G3 to G2
		G4 to G1
		5. Stepper motor rotates at 1.8° ± 0.1° for each step non cumulative.
		b. The frequency of logic switches is measured at any one gate o/p terminal.
		7. The actual frequency is given by 4 * measured frequency
		8. The RPM measured are noted down N-m

Experiment 10 : Speed Control of universal motor using AC voltage regulator

-	Experiment No.:	10	Marks		Date Planned		Date Conducted		
1	Title	tle Speed Control of universal motor using AC voltage regulator							
2	Course Outcomes	Control the speed of universal motor using controlled rectifier or AC vo controller							
3	Aim	1. 2.	 To observe the variations of speed of AC Motor To plot speed Vs RMS current and speed Vs rms volt. 						
4	Material / Equipment Required	Lab M	1anual						
5	Theory, Formula, Principle, Concept								
6	Procedure,	1.	Connectio	ons are made	as shown.				
	Program, Activity, Algorithm, Pseudo Code	2.	DRB resis current &	tance is vari load volt are	ed in steps a noted.	and at each	step rms va	lues of load	
		3.	At each s tachomet	etting of DF er.	8. The spee	d in rpm is	also measu	ired using a	
		4.	The speed	d variation is	observed for	variation in [ORB resistanc	ce.	

	LABORATO	RY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2
		5. graphs of speed Vs Irms & N Vs Vrms are plotted
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Supply 1-plase 2289, AC Trig 1-plase 2289, AC Trig 1-plase 2289, AC Trig 1-plase 1
8	Observation Table,	
	Look-up Table,	
	Output	
9	Sample	
10	Graphs Outputs	Expected waveforms:
		$V_{\rm rms}$ (A)
11	Results & Analysis	The variation of speed of AC motor is observed and corresponding graphs are plotted
12	Application Areas	Universal motors are used in portable power tools and equipments, house hold applications.
13	Remarks	
14	Faculty Signature with Date	

Experiment 11 : Speed control of separately excited DC motor using an IGBT or MOSFET chopper

- Experiment No.: 11 Marks Date Date

	LABORATO	RY PLAN	- CAY 2019			BE-5	-EE-SKIT-Ph5b	1-F02-V2	2.2	
					Planned		Condu	ucted		
1	Title	Speed choppe	control of er	f separately	excited D0	c motor	using an	IGBT	or MOSFET	
2	Course Outcomes	Contro varying	l the speed duty cycle	d of a separa e of the thyris	ately exited stor.	DC moto	or using MC	SFET	chopper by	
3	Aim	T T	To construc	t a chopper	circuit and s	tudy its t	ime ratio (TI	RC) co	ntrols.	
4	Material /	Lab Ma	anual			,				
	Equipment	MOSFE	T chopper	Module						
	Required	DC Mo	tor							
5	Theory, Formula,	(δ)= (Τ ₀	_{N /} T)							
	Principle, Concept									
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Circu connect armatu The res Keep Chect correct Switc Keep each st The connect 	uit connect treating field gate and se pective firing input DC work all the of before switch on the closing freque tep.	tions are m of the moto lotor to load ource termir ng signal. voltage at 10 connections itching on th hopper unit a ncy constan	ade as sho r to field su points in the nal of the po 0 to 200v and confirn e equipmen and also DC t vary duty c een on the C	wn in th apply of choppe wer swit whethe t. power su ycle of c CRO.	ne circuit ir the choppe r. ch /MOSFE er the conn upply to the orrespondir	n the er pow ET is co nection chopp ng load	diagram by /er unit and onnected to us made are der. d voltage for	
		8. Tabu	lated load	speed of the	e motor for d	ifferent d	luty cycles.			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	+ . DC 2 2	TERMINAL			A ₁ r _a r _a F ₁ A ₂				
8	Observation Table,									
	Look-up Table, Output		VOLTAGE		RENT (A)	S	PEED IN RP	м 		CYCLE IN % δ
9	Sample									
	Calculations									
10	Graphs, Outputs									

BE-5-EE-SKIT-Ph5b1-F02-V2.2

11	Results & Analysis	DC chopper is constructed and its performance is studied.
12	Application Areas	Choppers are used in railway traction, battery charges, switched capacitance
		filters, variable frequency drives, class D electronic amplifiers, battery operated
		electric cars.
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 12 : Design of Snubber circuit

-	Experiment No.:	12	Marks		Date		Date		
	T'+1 -	Desta			Planned		Conducted		
1		Desig	esign of Shubber circuit						
2	Course Oulcomes	Desig	esign the shubber circuit for the protection of power circuit from faults						
3	AIM	Desi	gn of Snubb	er Circuit.					
4	Material /	Lab N	1anual						
	Equipment	SCR	.						
	Requirea	Resis	tor						
-	Theony Formula	Capa		<u> </u>					
5	Principlo Concopt	W/bo	1=0.032Vs/Rs 0 D- C- is the	Cs Snubbortin	no constant				
		Rc=Vc			le constant.				
		Whe	e Im is the di	scharging cu	rrent of the c	capacitor.			
		Due t	o overheatir	a. over volta	ae. over curr	ent or exces	sive change	in voltage or	
		curre	nt switching	devices and	d circuit com	ponents ma	ay fail. From	over current	
		they	can be prote	cted by placi	ing fuses at s	suitable loca	tions. Heat si	nks and fans	
		can k	be used to t	ake the exce	ess heat awa	ay from swit	ching device	es and other	
		comp	onents. Snu	bber circuits	are needed	to limit the I	rate of chang	je in voltage	
		or cu	rrent (di/dt	or dv/dt) an	d over voltag	ge during tu	rn-on and tui	n-off. These	
		are p	blaced acros	s the semi	conductor d	evices for p	protection as	well as to	
		Impro	ove the perfo	rmance. Stat	IC av/at is a	measure of	the ability of	a thyristor to	
		retair	a blocking :	state under t	he inituence	or a vollage	transient. In	lese are also	
		useu	acioss the re	elays and Swi	iccries to prev	int arcing.			
		These	hese are placed across the various switching devices like transistors, thuristors						
		etc.	tc. Switching from ON to OFF state results the impedance of the device						
		sudd	uddenly changes to the high value. But this allows a small current to flo						
		throu	gh the switc	h. This induc	es a large vo	ltage across	the device. If	f this current	
		reduc	ced at faster	rate more is	the induced	voltage acro	oss the devic	e and also if	
		the s	witch is not a	capable of w	ithstanding t	his voltage t	he switch be	comes burn	
		out. S	io auxiliary p	ath is needeo	d to prevent t	his high indu	uced voltage		
		Simila	arly when the	e transition is	from OFF to	ON state, d	ue to unever	1 distribution	
		of the	e current thr	ough the are	ea of the swi	tch overhea	ting will take	s place and	
		even	tually it will	be burned.	Here also s	nubber is r	necessary to	reduce the	
		curre	nt at starting	by making a	n atternate p	at			
6	Procedure,	1.	Switch S	s turned on	at t=0, a step	o voltage is	applied acro	SS SCR. This	
	Program, Activity,		voltage W	in nave a nig	n avzat. The	value of shi		components	
	Code			eu by using i Die in forwor	d blocking st	ato the capa	citor will char	rae	
		2	Therefore	voltage acr	A DIOCKING SL	increase or	adually Thus	s the rate of	
		³	change of	voltage acro	oss SCR is rec	duced.	addaty. mus		

	LABORATOR	RY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2
		4. When SCR is turned on the charged capacitor will discharge through resistance R and SCR. Thus R limits the discharge current of the
		capacitor and prevents damage of SCR due to over current.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	R _s C _s C _s Load
8	Observation Table, Look-up Table, Output	For dv/dt= t= VA
9	Sample Calculations	
10	Graphs Outputs	
11	Results & Analysis	For given du/dt ratings, design a snubber sirguit by using the formula and
		observe the response of the circuit Shown by the graph
12	Application Areas	Snubber circuits are used across the relays and switches to prevent arcing.
13	Remarks	
14	Faculty Signature with Date	

Copyright ©2017. cAAS. All rights reserved.